

JĘZYK ANGIELSKI Irregular verbs

INFINITIVE to...	$\begin{aligned} & \text { PAST } \\ & \text { SIMPLE } \end{aligned}$	PAST PARTICIPLE	INFINITIVE to...	$\begin{aligned} & \text { PAST } \\ & \text { SIMPLE } \end{aligned}$	$\begin{gathered} \text { PAST } \\ \text { PARTICIPLE } \end{gathered}$
be	was/were	been	grow	grew	grown
beat	beat	beaten	hang	hung	hung
become	became	become	have	had	had
begin	began	begun	hear	heard	heard
bite	bit	bitten	hide	hid	hid
blow	blew	blown	hit	hit	hit
break	broke	broken	hold	held	held
bring	brought	brought	hurt	hurt	hurt
build	built	built	keep	kept	kept
buy	bought	bought	know	knew	known
catch	caught	caught	lay	laid	laid
choose	chose	chosen	lead	led	led
come	came	come	leave	left	left
cost	cost	cost	lend	lent	lent
cut	cut	cut	let	let	let
do	did	done	lie	lay	lain
draw	drew	drawn	light	lit	lit
dream	dreamt (-ed)	dreamt (-ed)	lose	lost	lost
drink	drank	drunk	make	made	made
drive	drove	driven	mean	meant	meant
eat	ate	eaten	meet	met	met
fall	fell	fallen	pay	paid	paid
feed	fed	fed	put	put	put
feel	felt	felt	read	read	read
fight	fought	fought	ride	rode	ridden
find	found	found	ring	rang	rung
fly	flew	flown	rise	rose	risen
forget	forgot	forgotten	run	ran	run
forgive	forgave	forgiven	say	said	said
freeze	froze	frozen	see	saw	seen
get	got	got	seek	saw	seen
give	gave	given	sell	sold	sold
go	went	gone	send	sent	sent

J̧̣ZYK ANGIELSKI

Irregular verbs | English tenses

MATEMATYKA

Trygonometria | Wzory skróconego mnożenia | Figury | Kąty

TRYGONOMETRIA							WZORY SKRÓCONEGO MNOŻENIA	
α	0	$\frac{\pi}{6}$	$\frac{\Pi 1}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	Π	kwadrat sumy	$(\mathrm{a}+\mathrm{b})^{2}=\mathrm{a}^{2}+2 \mathrm{ab}+\mathrm{b}^{2}$
	0°	30°	45°	60°	90°	180°	kwadrat roznicy róznica kwadratów	$(a-b)^{2}=a^{2}-2 a b+b^{2}$
$\sin \alpha$	0	1	$\sqrt{2}$	$\sqrt{3}$	1	0		$a^{2}-b^{2}=(a-b)(a+b)$
$\sin \alpha$	0	$\overline{2}$		2	1	0	szestcian sumy	$(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	sześcian róznicy	$(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$
$\tan \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	-	0	suma sześcianów	$a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
$\tan \alpha$	0	3	1			0	$\begin{aligned} & \hline \text { różnica } \\ & \text { sześcianów } \end{aligned}$	$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
$\cot \alpha$	-	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	-	kwadrat sumy 3 składników	$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+a c+b c)$

POLA I OBJక̧TOSCI FICUR PRZESTRZENNYCH

Ostrosłupy

Graniastosłupy
Figury obrotowe

Ostrosłup czworokątny

$\mathbf{P c}=\mathbf{P p}+\mathbf{P b}$
$\mathrm{V}=1 / 3 \mathrm{PpH}$
$\mathbf{P c}=\mathbf{P p}+\mathbf{P b}$
$\mathbf{V}=1 / 3 \mathbf{P p H}$

Sześcian

Graniastosłup trójkątny

Walec

$\mathrm{H} \quad$| $\mathrm{Pc}=2 \mathrm{Pp}+\mathrm{Pb}$ |
| :--- |
| $\mathrm{V}=\mathrm{PpH}$ |

Stożek

$\mathbf{P c}=\mathbf{P p}+\mathbf{P b}$ $\mathrm{V}=1 / 3 \mathrm{PpH}$

Kula

$\mathbf{P c}=4 \Pi \mathbf{R}^{2}$
$V=4 / 3 \Pi R^{3}$

KATY					
	λ				
$\begin{gathered} \text { KAT ZEROWY } \\ 0^{\circ} \end{gathered}$	KĄT OSTRY $0^{\circ}<\text { KAT }<90^{\circ}$	$\begin{gathered} \text { KAT PROSTY } \\ 90^{\circ} \end{gathered}$	KAT ROZWARTY $90^{\circ}<$ KAT $<180^{\circ}$	$\begin{gathered} \text { KA̦T PÓtPELNY } \\ 180^{\circ} \end{gathered}$	$\begin{gathered} \text { KAT PEENY } \\ 360^{\circ} \end{gathered}$

FIZYKA

WZORY			
WZÓR wielkości	NAZWA wielkości	SYMBOL wielkości	JEDNOSTKA
$v=\frac{s}{t}$	Prędkość w ruchu jednostajnym prostoliniowym	v-prędkoṡć, s-droga, t-czas	$1=\frac{m}{s}$
$\mathrm{s}=\mathrm{v} \cdot \mathrm{t}$	Droga w ruchu jednostajnym prostoliniowym		1 m
$\mathrm{a}=\frac{\Delta \mathrm{v}}{\Delta \mathrm{t}} \quad \Delta \mathrm{v}=\mathrm{v}-\mathrm{v}_{0}$	Przyspieszenie	a - przyspieszenie, $\Delta \mathrm{t}$ - przyrost czasu $\Delta \mathrm{v}$ - przyrost prędkości	$1=\frac{\mathrm{m}}{\mathrm{s}^{2}}$
$\mathrm{v}=\mathrm{v}_{\mathrm{o}}+\mathrm{a} \cdot \mathrm{t}$	Prędkość w ruchu jednostajnie przyspieszonym	v-prędkość, a - przyspieszenie, t-czas	$1=\frac{\mathrm{m}}{\mathrm{s}}$
$a=\frac{F}{m}$	Przyspieszenie pod wpływem działania stałej siły	a - przyspieszenie, F-siła, m - masa	$1=\frac{\mathrm{m}}{\mathrm{s}^{2}}$
$\mathrm{F}=\mathrm{m} \cdot \mathrm{a}$	Siła w ruchu jednostajnie przyspieszonym		$1 \mathrm{~N}=1 \mathrm{~kg} \cdot 1=\frac{\mathrm{m}}{\mathrm{s}^{2}}$
$\mathrm{F}=\mathrm{m} \cdot \mathrm{g}$	Siła ciężkości (ciężar ciała)	F - siła, m - masa, g - przyspieszenie ziemskie ($10 \mathrm{~m} / \mathrm{s}^{2}$)	1N
$\mathrm{p}=\mathrm{m} \cdot \mathrm{v}$	Pęd ciała	p-pęd, m - masa, v-prędkość	$1 \mathrm{~kg} \cdot 1=\frac{\mathrm{m}}{\mathrm{s}}$
$\mathrm{W}=\mathrm{F} \cdot \mathrm{s}$	Praca mechaniczna	W - praca, F-siła, s - droga	$1 \mathrm{~J}=1 \mathrm{~N} \cdot 1 \mathrm{~s}$
$\mathrm{P}=\frac{\mathrm{W}}{\mathrm{t}}$	Moc mechaniczna	P - moc, W - praca, t-czas	$1 \mathrm{~W}=\frac{1 \mathrm{~J}}{1 \mathrm{~s}}$
$E_{k}=\frac{m \cdot v^{2}}{2}$	Energia kinetyczna	E_{k} - energia kinetyczna, m-masa, v-prędkość	1 J
$E_{p}=m \cdot g \cdot h$	Energia potencjalna ciężkości	E_{p} - energia potencjalna, m-masa, g - przyspieszenie ziemskie ($10 \mathrm{~m} / \mathrm{s}^{2}$), h-wysokość	1 J

ZASADY		
NAZWA	TREŚĆ	WZÓR
I zasada dynamiki Newtona (zasada bezwładności)	Jeżeli na ciało nie działa żadna siła albo działają siły, których wypadkowa jest równa zeru, to ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym po linii prostej.	$\begin{gathered} \vec{F}_{w}=0,\left\{\begin{array}{l} v=0 \\ \vec{v}=\text { const. } \end{array}\right. \\ \mathrm{F}_{\mathrm{w}} \text { - siła wypadkowa, }[\mathrm{F}]=\mathrm{N} \text { (niuton), } \\ \mathrm{v} \text { - prędkość, }[\mathrm{v}]=\mathrm{m} / \mathrm{s} \end{gathered}$
II zasada dynamiki Newtona	Jeżeli na ciało działa stała, niezrównoważona siła, to ciało porusza się z przyspieszeniem o stałej wartości. Wartość tego przyspieszenia jest wprost proporcjonalna do wartości działającej siły, a odwrotnie proporcjonalna do masy ciała.	$\begin{gathered} \vec{a}=\frac{\vec{F}}{m} \\ a-\text { przyspieszenie, }[\mathrm{a}]=\mathrm{m} / \mathrm{s}^{2} \\ \mathrm{~F} \text { - siła, }[\mathrm{F}]=\mathrm{N}(\text { niuton }) \\ \mathrm{m} \text { - masa, }[\mathrm{m}]=\mathrm{kg} \end{gathered}$
III zasada dynamiki Newtona (zasada akcji i reakcji)	Jeżèli ciało A działa na ciało B pewną siłą $\overrightarrow{\mathrm{F}}_{\mathrm{AB}}$, to ciało B działa na ciało A siłą $\vec{F}_{\text {BA }}$ o tej samej wartości, lecz zwróconą przeciwnie.	$\begin{gathered} \vec{F}_{A B}=-\vec{F}_{B A} \\ F \text { - siła, }[F]=N \text { (niuton) } \end{gathered}$

Kwasy | Wodorotlenki | Dysocjacja jonowa | pH

KWASY

Związki chemiczne wykazujące charakter kwasowy; zawieraja łatwo dysocjujące atomy wodoru. W roztworach wodnych dysocjują one na kation wodorowy i anion reszty kwasowej.

azotowy (III)	HNO_{2}	$\mathrm{H}-\mathrm{O}-\mathrm{N}=\mathrm{O}$
azotowy (V)	HNO_{3}	$\mathrm{H}-\mathrm{O}-\mathrm{N}=\mathrm{O}$
siarkowy (IV)	$\mathrm{H}_{2} \mathrm{SO}_{3}$	$\begin{aligned} & \mathrm{H}-\mathrm{O}-\mathrm{S}=\mathrm{O} \\ & \mathrm{H}-\mathrm{O}^{-} \end{aligned}$
siarkowy (VI)	$\mathrm{H}_{2} \mathrm{SO}_{4}$	$\begin{aligned} & \mathrm{H}-\mathrm{O}-\mathrm{S}=0 \\ & \mathrm{H}-\mathrm{O}^{-}=0 \end{aligned}$
(orto)forsforowy (V)	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$\begin{aligned} & \mathrm{H}-\mathrm{O} \\ & \mathrm{H}-\mathrm{O}-\mathrm{P}=\mathrm{O} \\ & \mathrm{H}-\mathrm{O} \end{aligned}$
węglowy	$\mathrm{H}_{2} \mathrm{CO}_{3}$	$\begin{aligned} & \mathrm{H}-\mathrm{O}-\mathrm{C}=\mathrm{O} \\ & \mathrm{H}-\mathrm{O}^{-} \end{aligned}$
chlorowy (I)	HClO	$\mathrm{H}-\mathrm{O}-\mathrm{Cl}$
chlorowy (III)	HClO_{2}	$\mathrm{H}-\mathrm{O}-\mathrm{Cl}=\mathrm{O}$
chlorowy (V)	HClO_{3}	$\mathrm{H}-\mathrm{O}-\mathrm{Cl}=\mathrm{O}$
chlorowy (VII)	HClO_{4}	$\begin{aligned} & =\mathrm{O} \\ \mathrm{H}-\mathrm{O}-\mathrm{Cl} & =\mathrm{O} \\ & =\mathrm{O} \end{aligned}$

WODOROTLENKI

Wodorotlenki to związki chemiczne zbudowane z kationów metali i anionów wodorotlenkowych o wzorze ogólnym: M(OH)n. Wodorotlenki otrzymuje się jako efekt działania tlenków metali aktywnych (tlenków zasadowych) na wodę oraz niektórych metali na wodę.

wodorotlenek sodu	NaOH	$\mathrm{Na}-\mathrm{O}-\mathrm{H}$
wodorotlenek potasu	KOH	$\mathrm{K}-\mathrm{O}-\mathrm{H}$
wodorotlenek wapnia	$\mathrm{Ca}(\mathrm{OH})_{2}$	$\mathrm{Ca}-\mathrm{O}-\mathrm{H}$
wodorotlenek magnezu	$\mathbf{M g}(\mathrm{OH})_{2}$	$\mathrm{Mg}-\mathrm{O}-\mathrm{H}$
wodorotlenek glinu	$\mathrm{Al}(\mathrm{OH})_{3}$	$\begin{array}{r} \hline-\mathrm{O}-\mathrm{H} \\ \mathrm{Al}=\mathrm{O}=\mathrm{H} \\ =\mathrm{O}-\mathrm{H} \end{array}$
wodorotlenek żelaza (II)	$\mathrm{Fe}(\mathrm{OH})_{3}$	Fe- $\begin{gathered}-\mathrm{O}-\mathrm{H} \\ =\mathrm{O}-\mathrm{H} \\ \mathrm{O}-\mathrm{H}\end{gathered}$
wodorotlenek miedzi (II)	$\mathrm{Cu}(\mathrm{OH})_{2}$	$\mathrm{Cu}-\mathrm{O}-\mathrm{H}$

Wodorotlenki sodu i potasu są składnikami preparatów do udrożniania rur, a także do produkcji środków piorących. Wodorotlenek wapnia tworzy z wodą zawiesinę - mleko wapienne.

DYSOCJACJA JONOWA (elektrolityczna)

Rozpad elektrolitów na jony dodatnie (kationy) i jony ujemne (aniony) pod wpływem wody lub innych rozpuszczalników polarnych.

Elektrolity - substancje, które po rozpuszczeniu w wodzie lub w innych rozpuszczalnikach polarnych oraz w stanie stopionym przewodzą prąd elektryczny. Elektrolitami są związki o budowie jonowej lub polarnej: sole, wodorotlenki, kwasy tlenowe, wodorki kwasowe oraz niektóre związki organiczne (np. niektóre kwasy karboksylowe i ich sole, aminokwasy).
Nieelektrolity - substancje nie podlegające dysocjacji jonowej. Do nieelektrolitów należy większość związków organicznych, tlenki i wodorki nie reagujące z wodą.
Suma ładunków dodatnich na kationach w danym roztworze elektrolitu jest równa sumie ładunków ujemnych na anionach.

pH														
kwaśny					obojętny					zasadowy				
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

CHEMIA

Układ Okresowy Pierwiastków

Periodyzacja epok | Rodzaje i gatunki literackie

PERIODYZACJAEPOK

RODZAJE I GATUNKI LITERACKIE

EPIKA	LIRYKA	DRAMAT	GATUNKI POGRANICZNE	GATUNKI MIESZANE (synkretyczne)
- nowela - proza poetycka/ - opowiadanie reportażowa - powieśc - legenda - epopeja (epos) - podanie (mit) - baśńn - anegdota - gawęda - humoreska - poemat epicki (właściwy) - rapsod - kazania - roczniki - żywoty świętych	- elegia - fraszka - hymn - oda - pieśń - tren - psalm - erotyk - epigramat - poezja świecka/ liturgiczna - sonet - poemat liryczny - list	- dramat właściwy - komedia - tragedia - farsa - misterium	- esej - felieton - reportaż - opera - operetka - pamiętnik - biografia - dziennik - recenzja - traktat filozoficzny	- ballada - satyra - poemat dygresyjny - poemat heroikomiczny - powieść poetycka - sielanka - bajka - dramat romatyczny

BIOLOGIA

Podstawowe typy komórek | Podstawy genetyki

PODSTAWOWE TYPY KOMÓREK | CHARAKTERYSTYKA STRUKTUR KOMÓRKOWYCH

Komórka to podstawowa jednostka strukturalna i funkcjonalna każdego organizmu.

- Każdy organizm może składać się z jednej lub wielu komórek, tym samym każda komórka wykonuje wszystkie podstawowe czynności życiowe, takie jak odżywianie, oddychanie czy rozmnażanie.
- Kształt komórki może być bardzo różny. Pierwotnie kształt ten jest zbliżony do kuli, ale komórki wyspecjalizowane, wchodzące w skład tkanek mają bardzo różnorodne kształty, co wiąże się z pełnioną przez nie funkcją.
- Wielkość komórek waha się najczęściej w granicach od kilku do kilkudziesięciu $\mu \mathrm{m}$. Najmniejsze komórki to komórki bakterii ($0,2 \mu \mathrm{~m}$), największe to u roślin włókna indyjskiej rośliny rami (do 50 cm), a u zwierząt komórka strusiego jaja o średnicy 30 cm . Komórki nerwowe u dużych zwierząt mogą osiągać długość 1 m .

Budowa komórki

GENETYKA

Podstawy genetyki klasycznej | Podstawowe pojęcia stosowane w genetyce

- Gen - odcinek DNA zawierający informację o kolejności aminokwasów w cząsteczce białka.
- Allel - odmiana genu wywołująca różną postać tej samej cechy (na przykład czerwona lub biała barwa kwiatu).
- Allel dominujący - odmiana genu ujawniająca się w fenotypie niezależnie od rodzaju drugiego allelu.
- Allel recesywny - odmiana genu ujawniająca się w fenotypie tylko wtedy, gdy drugi allel jest również recesywny, obecność allelu dominującego maskuje istnienie recesywnego.
- Heterozygota - osobnik (lub komórka) posiadający dwa różne allele tego samego genu.
- Homozygota - osobnik (lub komórka) posiadający dwa takie same allele. Jeśli obydwa allele są dominujące, mówimy o homozygocie dominującej, jeśli recesywne - o recesywnej.
- Genotyp - zestaw genów danego organizmu.
- Fenotyp - cechy organizmu będące wynikiem współdziałania genów i środowiska.

> I Prawo Mendla - prawo czystości gamet

Gamety zawierają po jednym allelu z każdej pary alleli.
Il Prawo Mendla - prawo niezależnej segregacji cech

BIOLOGIA

PODSTAWOWE TYPY KOMÓREK | CHARAKTERYSTYKA STRUKTUR KOMÓRKOWYCH

Na początku XX wieku zasady dziedziczenia zostały uzupełnione przez Thomasa Morgana. Uczony ten był twórcą chromosomowej teorii dziedziczności, odkrywając chromosomy jako miejsce, gdzie znajdują się geny. Zauważył też, że nie wszystkie cechy dziedziczą się zgodnie z II prawem Mendla. Znajdujące się na jednym chromosomie allele różnych genów rozchodzą się do gamet razem. Geny te nazwał genami sprzężonymi.

- Geny sprzężone to geny znajdujące się na jednym chromosomie.

Allele genów znajdujących się na dwóch różnych chromosomach rozchodzą się do gamet niezależnie od siebie, tworząc dowolne kombinacje z jednakowym prawdopodobieństwem (II prawo Mendla).

Allele genów znajdujących się na tym samym chormosomie trafiają do gamet razem, czyli są ze sobą sprzężone. W praktyce od tej zasady istnieją wyjątki spowodowane zjawiskiem crossing-over.

SCHEMAT ZAPISU PROSTEJ KRZYŻÓWKI GENETYGZNEJ

Przy zapisywaniu krzyżówek stosujemy najczęściej symbole literowe. Allele dominujące zapisujemy duża literą alfabetu-np. A, a recesywne małą-a.
Uwaga: do jednej cechy stosujemy jedną literę alfabetu. Nie stosuje się zapisów A - cecha dominująca, b - cecha recesywna (przy bardziej skomplikowanych krzyżówkach taki zapis nieuchronnie prowadzi do błędu).

Symbole:
AA - homozygota dominująca
aa - homozygota recesywna
Aa - heterozygota

Dodatkowe symbole stosowane przy zapisie krzyżówek:
P-pokolenie rodzicielskie
F1 - pierwsze pokolenie potomne
F2 - drugie pokolenie potomne

- Najczęściej stosowana forma zapisu to schemat lub tabelka

Przykład:
Zapis krzyżówki wykonanej przez G. Mendla, doświadczenie dotyczące dziedziczenia barwy kwiatów u grochu.

A - allel dominujący warunkujący czerwoną barwę kwiatów
a - allel recesywny - odpowiada za białe
kwiaty
F1: Aa x Aa

Gamety	A	a
A	AA czerwony	Aa czerwony
a	Aa czerwony	aa biały

P:
rodzaje gamet

F1
rodzaje gamet

